skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ribbe, Alexander_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Visualizing the network of a solvent‐swollen polymer gel remains problematic. To address this challenge, open transmission electron microscopy (TEM) was applied to thin gel films permeated by a nonvolatile ionic liquid. The targeted physical gels were prepared by cooling concentrated solutions of poly(ethylene glycol) in 1‐ethyl‐3‐methyl imidazolium ethyl sulfate [EMIM][EtSO4]. During the cooling, gelation occurred by a frustrated crystallization of the dissolved polymer, leading to a percolated, solvent‐permeated semicrystalline network in which nanoscale polymer crystals acted as crosslinks. Crystalline features ranging from ~5 to ~200 nm were observed, with the visible network strands dominantly consisting of long curvilinear crystallites of ~15–20 nm diameter. Nascent spherulites irregularly decorated the network, creating a complex structural hierarchy that complicated analyses. Lacking diffraction contrast, TEM did not visualize the many disordered, fully solvated PEG chains present in the voids between crystals. Recognizing that a network's three dimensionality is ambiguous when assessed through two‐dimensional microscopy projections, a small gel region was studied by TEM tomography, revealing a nearly isotropic three‐dimensional arrangement of the curvilinear crystallites, which displayed remarkably uniform cylindrical cross sections. 
    more » « less